Control strategies for fuel cell based hybrid electric vehicles: from offline to online

Alexandre Ravey, Benjamin Blunier and Abdellatif Miraoui
Transport and Systems Laboratory (SeT) – EA 3317/UTBM
University of Technology of Belfort-Montbéliard, France
Emails: (alexandre.ravey,benjamin.blunier,abdellatif.miraoui)@utbm.fr

Abstract—This paper describes two different control strategies for a fuel cell based hybrid electric vehicle. The offline strategy is based on dynamic programming and the online one is based on a fuzzy logic controller. These two strategies are then compared and the online results are improved with a genetic algorithm optimisation.

I. INTRODUCTION

Proton Exchange Membrane Fuel Cells (PEMFC) appear to be suitable for vehicular applications [1] due to their low operating temperature range (60-90 °C) [2] and their high power density. An Hybrid Electric Vehicle (HEV) based on PEMFC and battery leads to zero emission and enables kinetic energy recovery during braking phases. The control of the two sources of energy on this vehicle is directly linked to hydrogen consumption [3]. Two kinds of control are found in the literature: on the one hand, the offline control aims at optimizing the power split between the two sources for a known driving cycle; on the other hand, the online control is based on real-time controller such as fuzzy logic [4], neural network [5] or predictive control [6]. This paper compares these strategies on different scenarios of driving cycles. The comparison will permit to the online controller to be adapted based on the driving cycle using, for example, learning algorithms. In a first part, the model of a fuel cell based hybrid electric vehicle is described. Then, an offline control based on a dynamic programming algorithm is used to obtain the best fuel economy for a known driving cycle. A fuzzy logic controller is then defined for the same driving cycle and both strategy are compared. Finally, a genetic algorithm is used to improve the online strategy in order to fill the gap between the two results of online and offline control strategies.

II. VEHICLE’S CHARACTERISTICS

A. Vehicle model

The vehicle considered for this study is a series hybrid electric vehicle based on a PEM fuel cell and batteries as shown in Figure 1.

The PEMFC is connected to the DC bus via a DC/DC converter whereas the batteries are directly linked to the bus. Only one degree of freedom for the control strategy is possible: only the fuel cell current $i_{FC}$ can be controlled. The vehicle power as a function of the speed is given by (1) [7]:

$$P_{mot}(t) = v \left( m_u(t) \frac{d}{dt} v(t) + F_a(t) + F_r(t) + F_g(t) + F_d(t) \right)$$

(1)

where $F_a$ is the drag force, $F_r$ the rolling friction, $F_g$ the force caused by gravity when driving on non-horizontal roads and $F_d$ the disturbance force that summarizes all other effects.

The power split between the fuel cell $P_{FC}$ and the batteries $P_b$ is given by (2).

$$P_{mot}(t) = \eta_{FC} P_{FC}(t) + \eta_b P_b(t)$$

(2)

where $\eta_{FC}$ is the fuel cell efficiency and $\eta_b$ is the battery efficiency.

Due to the architecture, only the fuel cell can be actively controlled.

B. Fuel cell model

The PEMFC is used as the primary source of energy and the objective of the strategy is to minimize the hydrogen consumption given by (3) [8], [9]:

$$m_{H_2} = \int_0^t \frac{M_{H_2} n_c}{2 F} I_{FC}(t) \, dt$$

(3)

where $m_{H_2}$ is the hydrogen mass, $M_{H_2}$ is the hydrogen molar mass, $n_c$ is the number of cells, $I_{FC}$ the fuel cell current and $F$ the faraday constant (96,487 C). The fuel cell current $I_{FC}$ is calculated based on the polarization curve given by Figure 2.
III. Offline Control Strategy

The offline control strategy objective is to find the minimum hydrogen consumption on a known driving cycle [10], [11]. The consumption minimization problem can be written as a problem of optimal control for discrete system [6].

A. Problem formulation

The battery’s state of charge (SoC) $x(k)$ can be considered as a dynamic system. The system can be written as:

$$x(k + 1) = x(k) + P_b \eta_b T_s$$  \hspace{1cm} (4)

$$\eta_b = \begin{cases} 0.95 & \text{if } P_b(t) < 0 \\ 1 & \text{if } P_b(t) \geq 0 \end{cases}$$ \hspace{1cm} (5)

where $P_b$ is the battery power level defined by (2), $\eta_b$ the battery charge acceptance (0.95 for charge and 1 for discharge) and $T_s$ the sampling time. The chosen criterion for $N$ samples can be written as:

$$J = \sum_{k=0}^{N-1} \Delta m_{H_2}(P_{FC}, k) T_s$$ \hspace{1cm} (6)

where $m_{H_2}(P_{FC}, k)$ is the hydrogen mass consummed for the power $P_{FC}$ between two sampling times. According to Figure 2, the fuel cell power is obviously limited:

$$\mu_{FC} = P_{FC_{min}} < P_{FC} < P_{FC_{max}}$$ \hspace{1cm} (7)

where $P_{FC_{min}} = 0$ kW and $P_{FC_{max}} = 5$ kW.

Moreover, the hybrid electric vehicle studied here is not plugin, so the remaining state of charge at the end of the cycle needs to be the same as the one at the beginning [12], and the state of charge’s boundaries on $P_b$ must be limited by the batteries charge, and discharge efficiencies. The discrete-time optimal problem can be formulated as following:

$$\min_{P_{FC} \in \mu_{FC}} \sum_{k=0}^{N-1} \Delta m_{H_2}(P_{FC}, k) T_s$$ \hspace{1cm} (8)

$$x(k + 1) = x(k) + P_b \eta_b T_s$$ \hspace{1cm} (9)

$$x_0 = SoC_{init}$$ \hspace{1cm} (10)

$$x_N = SoC_{final} = SoC_{init}$$ \hspace{1cm} (11)

$$x_k \in [0.4, 0.9]$$ \hspace{1cm} (12)

$$N = \frac{T_{dc}}{T_s}$$ \hspace{1cm} (13)

B. Dynamic programming algorithm

To solve this optimisation problem, a dynamic programming algorithm is used. This algorithm has been given by Sundstorm and Guzzella in [13]. The control input variable $P_{FC}$ is discretized by step of 100 W such that $P_{FC} = [0, 100, 200...4900, 5000]$ and the algorithm calculates the minimum cost to go function $C = \min(m_{h_2})$ at every node in the discretized state-time space with the constraint $x(k)$ given by (8) and the feasible inputs solutions give by (7).

IV. Online Control Strategy

A. Real time control strategy definition

The previous offline control strategy is suited for a knowing driving cycle. The online control strategy focuses on real time strategy without predictive informations. This strategy aims at reducing the hydrogen consumption and maintain the final state of charge in an optimal zone chosen by the controller. In the offline control strategy, the input control variable $P_{FC}$ can be chosen between 0 W and 5,000 W with a step of 100 W. Due to the lack of predictive information in real time strategy, the controller will focus on four working modes (states) forced by the battery’s state of charge:

- **Low state of charge**: the state of charge of the batteries is low, the fuel cell needs to operate upper to its optimal running point;
- **Optimal power zone**: the fuel cell run within its optimal power zone, the batteries absorbs the peaks of power;
- **Charge sustaining**: the state of charge of the batteries is high, the fuel cell can work around its optimal running zone;
- **Electric Zone**: the state of charge of the batteries is very high, the fuel cell is switched off and the vehicle runs in electric mode.

B. Fuzzy logic controller

To implement the following states, a fuzzy logic controller developed by Blunier and al. is used [14]. Figure 3 gives the membership functions of the controller for different fuel cell power levels.

Figure 4 shows the simulation results of the fuzzy logic controller for the LA92 driving cycle. The state of charge varies in its optimal state of charge window. The fuel cell current is sometimes reduced when the state of charge is too
high. Table I shows the hydrogen consumption for the driving cycle using the controller.

![Fig. 3. Fuel cell fuzzy logic controller](image)

![Fig. 4. simulation results](image)

**V. STRATEGY COMPARISON**

According to Figure 4, the dynamic programming strategy allows to find the optimum fuel economy while keeping the final state of charge as its initial value. Knowing the driving cycle allows the strategy to keep a constant fuel cell current value minimizing the hydrogen consumption and charging the battery during stop phases of the driving cycle. Therefore, the online strategy cannot predict the power needed during the cycle and keep the state of charge in its optimal zone, decreasing the fuel cell when the state of charge is too high. Table I shows the hydrogen consumption for both strategies, hybridization and for a stand alone fuel cell vehicle. Hybridization and control strategy permit to improve the fuel cell economy up to 40% for a fuzzy controller and up to 60% for dynamic programming. In the next section, the membership functions of the online fuzzy logic controller will be tuned in order to reduce the gap between the offline and online results.

**VI. FUZZY LOGIC CONTROLLER’S OPTIMISATION USING GENETIC ALGORITHM**

**A. Problem formulation**

The previously described fuzzy logic controller focus on maintaining the state of charge of the battery pack in the optimal zone (around 0.7) in order to respect the constraint given by (17). In order to reduce the hydrogen consumption, the membership functions defining the fuel cell current (as described in Figure 3), are tuned. Figure 5 represents an example of the configuration of the four membership function. Each functions are paralleloid and four variables \( x(i, j) \) can be associated where \( i \) is the number of the function (1 for Ze, 2 for Low, 3 for Optimal and 4 for High) and \( j \) is the number of the variable, as described in the figure \( (j \in [1, 4]) \).

![Fig. 5. Fuzzy membership’s variables](image)

The optimisation aims at reducing the hydrogen consumption by varying these parameters while respecting the following constraint:

\[
x(i, (j - 1)) \leq x(i, j) \quad (14)
\]

\[
x((i - 1), 3) < x(i, 2) \quad (15)
\]

\[
x(i, j) \in [0, 130] \quad (16)
\]

\[
\text{SoC}_{\text{final}} = \text{SoC}_{\text{init}} \quad (17)
\]

**B. Genetic algorithm**

To solve this optimisation problem, a genetic algorithm is used. A candidate solution is composed of the sixteen variables \( x(i, j) \) defined previously and the population is set to a hundred of candidate solutions. The population is randomly initialised, respecting the constraint given by (14) and the number of iterations is set to ten thousands. The fitness function run the fuzzy logic controller tuned by each candidate solution. The hydrogen can be reduced by 22% from the standard fuzzy controller. The fuel cell current and SoC profile are close to the dynamic programming ones, which are the optimum for this driving cycle.
### TABLE I

<table>
<thead>
<tr>
<th>Fuel cell power (kW)</th>
<th>Battery capacity (Ah)</th>
<th>Hydrogen consumption (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand alone fuel cell vehicle</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Fuzzy logic controller</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>Optimised Fuzzy logic controller</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>Dynamic programming</td>
<td>5</td>
<td>65</td>
</tr>
</tbody>
</table>

### VII. CONCLUSION

Both offline and online control strategy allow to improve the fuel economy of a fuel cell hybrid vehicle. Such a controller can also be applied to a ICE-based hybrid vehicle. Each strategy must be used in particular case: the offline can predict the control knowing a priori the driving cycle whereas the online control strategy is adapted for real time energy management. Optimising the online and comparing it to the offline results, which are the optimum, allows to tune the online controller for a particular driving cycle. Future works will aim at applying this methodology for several patterns of driving cycles to create a macro controller which can recognize, based on a neural-network based learning algorithm, the type of cycle (urban, high-way...) and adapts the fuzzy logic controller with the best parameters in real time.

### REFERENCES


